If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.185t^2-36.11t+1600=0
a = 0.185; b = -36.11; c = +1600;
Δ = b2-4ac
Δ = -36.112-4·0.185·1600
Δ = 119.9321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36.11)-\sqrt{119.9321}}{2*0.185}=\frac{36.11-\sqrt{119.9321}}{0.37} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36.11)+\sqrt{119.9321}}{2*0.185}=\frac{36.11+\sqrt{119.9321}}{0.37} $
| -2=7(-8+2x | | x2/3=1/10 | | -3=x^2+13(x)+8 | | (2x-3)^(2)-4(x-6)(x+2)=-2 | | 7+2(×+1)=2x+9 | | -y/4-6=-1 | | (2x-3)^2-4(x-6)(x+2)=-2 | | xx2/3=1/10 | | (1/6x)+45=x | | 9(8d−5)+13=12d−2 | | x+16=3x-30 | | 1/6x+45=x | | 7x+12=2(4x–5) | | 3(2x-1)=5x+1 | | –3(7–2x)=–1–4x | | x+7=7x−5 | | 4m-15m+50=126 | | 5x+7/8=x/2 | | 5(x+10)=25 | | 278-w=103 | | x²-8x-14=21 | | 212=-u+91 | | 4x-1=8x-6 | | 1.4x4.4=0.8x+1.46 | | 2x=66+24 | | x^2=656 | | 4x3=76 | | 0.8x-0.05x=0.3 | | -u+228=113 | | 2(6m+8)=4+6m | | -2f=-3f | | v/8+91=30 |